If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=180
We move all terms to the left:
3x^2-(180)=0
a = 3; b = 0; c = -180;
Δ = b2-4ac
Δ = 02-4·3·(-180)
Δ = 2160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2160}=\sqrt{144*15}=\sqrt{144}*\sqrt{15}=12\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{15}}{2*3}=\frac{0-12\sqrt{15}}{6} =-\frac{12\sqrt{15}}{6} =-2\sqrt{15} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{15}}{2*3}=\frac{0+12\sqrt{15}}{6} =\frac{12\sqrt{15}}{6} =2\sqrt{15} $
| h/4− 1=2 | | 1.5x-21=-0.5x+3 | | h4− 1=2 | | 41/b+5=13 | | -1.5x+21=0.5x-3 | | 48=g/2-7 | | 3-g/16=0 | | (1+(x/4))^24=21000 | | 2u+8=60 | | 6m-3=5m+1 | | -10(9-2+x)+1=x-69 | | 6(x-4)-2=6x-3 | | -5(x-3)+7(x+1)=4(x-2)-6 | | r/3=3r-56 | | 6x+17=58 | | 11x-19+2(5-x)=x-1 | | 4u-9=14 | | 8(x-2)+2x-4=10 | | 7-2x=-3(5-3x) | | 1+5x-5x=-8+x+2+1 | | 9v-7v=18 | | 97-v=289 | | 3.2y+2.6=-23 | | 5x-3/7-2x=24 | | 6+18x-1=9x+149-7x | | -299=-65—13x | | 3+100x^2=39 | | 16n^2+7=71 | | 8p-2=61+p | | 3x^2-7=4x | | 5g-(4g-1)=-12 | | 3x-1=2(x-3 |