If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=18
We move all terms to the left:
3x^2-(18)=0
a = 3; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·3·(-18)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*3}=\frac{0-6\sqrt{6}}{6} =-\frac{6\sqrt{6}}{6} =-\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*3}=\frac{0+6\sqrt{6}}{6} =\frac{6\sqrt{6}}{6} =\sqrt{6} $
| 8h+17=41 | | (x+16)+(6x+3)=180 | | 30=2(r-44) | | 3(x-1)=2(x | | 4y−16=4 | | 1=b/4-6 | | -9+3x-15=5x-125 | | 4y−16=44 | | h/5− 3= 2 | | 1+5y=-23+y | | y-74/5=4 | | 2x+17=17=12x-93 | | (5^3x-1)+5=100 | | w/3+39=49 | | x^2+(-24x)+144=36 | | -5y+17=8y-24 | | -3(h+3)=-30 | | s(11-)s=24 | | 15=2s+7 | | 5y-4=15y-74 | | (x-12)(x-12)=36 | | 12^2+b^2=5^2 | | x*x=4/9 | | 2u^2-90=0 | | 4x^2+52=97 | | 4(2-x)+1=2x+-5(1-4x) | | 4+3=5(x+5) | | (y+7)(2)=2y(2)+8y+42 | | d—=74 | | 56=7x+3+3x+13 | | F+3n=7n | | F=7/2(n-44) |