If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2=16
We move all terms to the left:
3x^2-(16)=0
a = 3; b = 0; c = -16;
Δ = b2-4ac
Δ = 02-4·3·(-16)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*3}=\frac{0-8\sqrt{3}}{6} =-\frac{8\sqrt{3}}{6} =-\frac{4\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*3}=\frac{0+8\sqrt{3}}{6} =\frac{8\sqrt{3}}{6} =\frac{4\sqrt{3}}{3} $
| −2.5+x=6.75 | | 2h+25=27 | | 2/t-2-t+1/t+4=0 | | 8f-8=56 | | n/3=16/6 | | 6c-8-2c=-16c | | 6+2(n-5)=12 | | x+11=17-x | | (12x)-2=10 | | 5n/6-8=17 | | 3(5x+1)=20 | | 3=7n-1 | | -(7-2x)+7=7 | | 6x+4÷3x+2=2 | | -21-8=-1+6(4-5a) | | x^2+20x-90=0 | | 2x/5+5=17 | | 32+5x=12 | | 16=b(4) | | 0=7-9x | | 16=b4 | | 6+x-3x+24=24x+6 | | -3a+6=24a+6 | | 5•y=12 | | -5n+6=-4n-15 | | 2/3x+1=-1/3-1 | | 2x/5-7=1 | | 4.3+10m=6.89 | | 4(y-7)=8 | | 5x+14-x=8 | | -4=x/(5*(3*10^-10)^9)-(x/(3*10^-10)) | | 5(x+8)=−10 |