3x2-5x=(x-6)(x-7)

Simple and best practice solution for 3x2-5x=(x-6)(x-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2-5x=(x-6)(x-7) equation:



3x^2-5x=(x-6)(x-7)
We move all terms to the left:
3x^2-5x-((x-6)(x-7))=0
We multiply parentheses ..
3x^2-((+x^2-7x-6x+42))-5x=0
We calculate terms in parentheses: -((+x^2-7x-6x+42)), so:
(+x^2-7x-6x+42)
We get rid of parentheses
x^2-7x-6x+42
We add all the numbers together, and all the variables
x^2-13x+42
Back to the equation:
-(x^2-13x+42)
We add all the numbers together, and all the variables
3x^2-5x-(x^2-13x+42)=0
We get rid of parentheses
3x^2-x^2-5x+13x-42=0
We add all the numbers together, and all the variables
2x^2+8x-42=0
a = 2; b = 8; c = -42;
Δ = b2-4ac
Δ = 82-4·2·(-42)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-20}{2*2}=\frac{-28}{4} =-7 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+20}{2*2}=\frac{12}{4} =3 $

See similar equations:

| 16-15+k= | | 25n-11= | | An=9n-3 | | 5(1.28)^x=40 | | 3y6=18 | | 11(m–5)=6(m+5) | | 48=16xx=3 | | 2(b+1)-8+b=-5 | | 11m-8m=121+14 | | 11(m-11)=2(4m+7) | | 27000-3000x=18000 | | x=2(x+10)/3 | | 1.8y=3.6 | | (23,000*43*r=35,000*284^2) | | n(n+3)/2=54 | | -1.5x+14.26=0.2(18-2) | | y*60=y+100 | | 8q+7−q=–9−q | | 5a=3a–18 | | X5-8=x | | 15v=5 | | 3m-42=6 | | X²+y²+10y-75=0 | | 3(5+2x)-2(4+x)=0 | | V=(20-2x)(14-2x)(x) | | F(x)=44-5x | | 6s^2+16s=-10 | | 6s+16s=-10 | | 2x2+-15x+9=0 | | 9m+11=27+5m | | 1=z/6-3 | | 15=3h+3 |

Equations solver categories