If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-5x-50=0
a = 3; b = -5; c = -50;
Δ = b2-4ac
Δ = -52-4·3·(-50)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-25}{2*3}=\frac{-20}{6} =-3+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+25}{2*3}=\frac{30}{6} =5 $
| 90-0.20x=70-0.70x | | 12e+25=-23 | | 2/3(7/8+8x)-2/8=5/8 | | 3.4+3(9.7-4.8x)=61.2 | | 2+5n+2n=9 | | 2^(x+9)=11 | | 4(x−8)−1=7(x−2) | | -2(1+x)=-4 | | 0.3(x+60)−0.06(x−40)=15.6 | | 45-2x=35-1.50x | | 20+3x=x^2/2 | | -1/40x+42=-1/15x+31 | | 3x-2=126 | | 11a+4=7a+8 | | (2x)+(2x7)=36 | | (x+9)^3+1=0 | | 65p•3P=5 | | 3.2x^2+1.344x+0.1=0 | | -1(x+4)+8=16 | | X^2+50=146-8x | | 4(x+2)^2=36 | | 6x-9+5x+8=90 | | 5=-0.14x+1.2 | | 9x/10=3x/5+3 | | x9+7-2=41 | | 1/4(8x+4)+2=7 | | 7n=1+-2n | | 3(k+10)=13k | | 0.2(2z+7)+6.4=0.7(2z-4) | | 9(y-4)-7y=5(4y-2) | | -8-5n=64+4n | | 14=31=-5(2x-9) |