If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x=-4x+15
We move all terms to the left:
3x^2-4x-(-4x+15)=0
We get rid of parentheses
3x^2-4x+4x-15=0
We add all the numbers together, and all the variables
3x^2-15=0
a = 3; b = 0; c = -15;
Δ = b2-4ac
Δ = 02-4·3·(-15)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*3}=\frac{0-6\sqrt{5}}{6} =-\frac{6\sqrt{5}}{6} =-\sqrt{5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*3}=\frac{0+6\sqrt{5}}{6} =\frac{6\sqrt{5}}{6} =\sqrt{5} $
| 8(2^x+3)=48 | | F(x)=1/3(-9x+-6) | | f(-3)=-3+2 | | 6x+10=15x | | -6x-3=51 | | 5y-13/2=15 | | x2+4x-3=6x+12 | | 6m−13−4m=−8m+27 | | n(n-1)(n-2)=0,1 | | w/2−8=6 | | 9x-2+20x+5-40=180 | | -(2.1x-9)=-10+1.7(x+10)-4 | | (3x-11)+(x+14)+(3x-5)=180 | | m+2m+3m+4m+5m=540 | | w/2−8=–6 | | 1/2=-3/7r | | -5/9=2/3b-1/3 | | m+2m+3m+4m5m=540 | | 0=3x^{3}-12x | | w+9/8=8 | | x75=525 | | m²=2m/3 | | 12+2e=7e+8 | | v+34/4=7 | | 6x+10=4x+2. | | 8y=3y+-14 | | -31+32x=33 | | 3x+2=2(2x-4)+x | | P(x)=-|2x+1- | | 15t–6=12t. | | 180=(8x+8)+(11x+20) | | -4|11x-8|=12 |