If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-50=0
a = 3; b = -4; c = -50;
Δ = b2-4ac
Δ = -42-4·3·(-50)
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{154}}{2*3}=\frac{4-2\sqrt{154}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{154}}{2*3}=\frac{4+2\sqrt{154}}{6} $
| 5x+3-6.3=2-4x=12 | | 2x/3+x/6=x-7 | | 2x+1/9=3x-2 | | 11p+22=55 | | 5(h-2)=40 | | 2(b-9=12) | | 7x-3=2x=11 | | 7(g+3=35) | | 3(a+5=28) | | 18=15+x | | 7.5x=9000 | | 11=-4(3x+3)=13x | | G(X)=x²+6X-99 | | 5x/11=-x+3 | | 10-6x-7-9x=-6 | | 5x11=+12 | | 10-6x-7-4=5 | | 1.12^x=1.25 | | -4(y-4y)+3=-3(2y-y)+4+14y | | 35x•75=2x | | H(t)=-16t+288t+6 | | -2(x+4)+5=8(x+3)+6 | | 7*(2x-1)=-77 | | -0.5x+0.4=-1.7-1.1x | | 3a+10-37=180 | | (x+1)+(x-3)=1/2 | | 5x-35=85+5x | | .5x+5=3x+10 | | W=90+4h | | A=2x6x7+2x3x7+6x7 | | F(x)=x3-140 | | X²+24x-3456=0 |