If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-253=0
a = 3; b = -4; c = -253;
Δ = b2-4ac
Δ = -42-4·3·(-253)
Δ = 3052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3052}=\sqrt{4*763}=\sqrt{4}*\sqrt{763}=2\sqrt{763}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{763}}{2*3}=\frac{4-2\sqrt{763}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{763}}{2*3}=\frac{4+2\sqrt{763}}{6} $
| 6x^2=504 | | (17x+4°)+(12°+15x)=180° | | 8v+16=2v+22 | | -19.61-14.5s-16.2=17.11-9.6s | | -3x-13=5x-5 | | 8x+8=2x+52 | | -5w+9(-40)=-7w-22 | | 8v+12=4v-20 | | 3w+27=-3w-9 | | x^2-800x+157662=0 | | 2x+4x=6x+4x | | -6(x+3)-3x=-98 | | x^2+20x-720=0 | | 34x^2+15x+1225=0 | | 3(x+2)-5=6x-3(1+x) | | p÷4+p=5 | | y/5=10+3 | | 3p=2(p-5)-(p+1) | | 5(3n+4)=6(6n+4)+2 | | 5(w+7)=-3w-29 | | 20t^2+135t+3050=15000 | | 4a+19=-3a-7 | | 10x^2+88x-110=0 | | 10/x+8/x^2=3 | | 10x^2+88x+125=0 | | 7/n=21/12 | | x^2+88x-110=0 | | -216-(1+7(1+8m))=0 | | ((5x12)-3)=+30-50 | | 91=-7(3a-10 | | n+2/n=19/3 | | n+2n=19/3 |