If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4x-10=8
We move all terms to the left:
3x^2-4x-10-(8)=0
We add all the numbers together, and all the variables
3x^2-4x-18=0
a = 3; b = -4; c = -18;
Δ = b2-4ac
Δ = -42-4·3·(-18)
Δ = 232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{232}=\sqrt{4*58}=\sqrt{4}*\sqrt{58}=2\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{58}}{2*3}=\frac{4-2\sqrt{58}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{58}}{2*3}=\frac{4+2\sqrt{58}}{6} $
| 2=3x/8 | | -12=12a | | -3x+2=5x-3 | | 8x-(2x-5)=35 | | 3(x+8)=5x+7-2x | | 18=4.5x | | i/23=6.7 | | 4(-6-8p)=-2p+6 | | 8x-6=2(4×+3) | | -5(5a-7)+5a=155 | | 1/5(x+3)=2x | | z+56=57 | | −4x+18=3x−24 | | 2(4x+5)=-12+6 | | 52+d=L | | 16-57y=43 | | 28+7x=8x+12 | | (1/2)y=6 | | -12=9x-6x | | 8(x-12)-12=24x-172 | | z+28=34 | | 8/3y-11=3 | | 12q−9q=12 | | d+31=–38 | | (C3)5(x–3)=-2x+20 | | w/7+2=9 | | 4+x/9=28 | | n-39=1 | | 94=(y/4)-18 | | x/9-15=13 | | 38+z=46 | | 5+45=-5(7x-10) |