If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-4=44
We move all terms to the left:
3x^2-4-(44)=0
We add all the numbers together, and all the variables
3x^2-48=0
a = 3; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·3·(-48)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*3}=\frac{-24}{6} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*3}=\frac{24}{6} =4 $
| -(4n-2)+2=n-6 | | 6(x-6)+4=-32=6x | | 6=v/4-16 | | 6(w+1)=2(1-3w)-8 | | g/3+7=10 | | 9−7d=-10d | | 25+120−10x=5(2x−7) | | 2(6x+5)=934 | | 6-4x=-2+8x | | 3/4x+5=1/3x+2 | | 14,6x-17,3=67,7-2,4x | | 16u+u-15u=10 | | 10m+5=9m | | 4(7-3t)+6t=-6t+8 | | w/2-17=26 | | v/2+12=6 | | r–7=15 | | -8=4+v | | x(4)+6+2-4=39 | | 4(1-3x)+3(x-3)=-6(x-6)+6 | | x(4)+6+2-7=39 | | -34=-4+6(f+3) | | 4(u+1)+5=6(u-1)=u | | y-6=(-7) | | 23=33-v | | 5—6=1—3+d | | 6=24/y | | 13,1x-22,6=28,2-12,3x | | 2(2z)+5=50 | | 3(x-4)=3(3x+2) | | 5+4{x-1}=2x-9 | | 40=34+y |