If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-31x+10=0
a = 3; b = -31; c = +10;
Δ = b2-4ac
Δ = -312-4·3·10
Δ = 841
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{841}=29$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-31)-29}{2*3}=\frac{2}{6} =1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-31)+29}{2*3}=\frac{60}{6} =10 $
| 6+4x-7x=-12 | | 6p+3p+4p-9p-3p=18 | | 6(2x-3)-2(6x+1)=10 | | 4x-3x0=12 | | 10x+6=(8x-6)x2 | | -w=-6.4 | | -4x+5•-4=-80 | | 48=8(x+2) | | 5x²-62x=0 | | 7j+2j-10j+(-j)+(-3)=7 | | 8f=-104 | | (2z-3)/(5)=3 | | -47+y=12 | | 0.5x^2-8x+35=0 | | -x-16=1 | | -9-2u=-u | | 9.8=1.4w | | 5x+6x-10=11x+14 | | x/2x+8=15 | | -7(-9+3x)=21 | | 61+n=12 | | 10=3x+-1 | | 943=k=112 | | x^2=11x-25 | | 11x-10=11x+14 | | -6(5k-7)=192 | | (9x-26)=(2x-12)+(4x+43) | | 3(m+2)=5-58 | | 4=-3x+11 | | 3x+-7=9 | | 6+x+3x=30 | | -0.45x+0.15x=8.7 |