If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-24x-1560=0
a = 3; b = -24; c = -1560;
Δ = b2-4ac
Δ = -242-4·3·(-1560)
Δ = 19296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19296}=\sqrt{144*134}=\sqrt{144}*\sqrt{134}=12\sqrt{134}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-12\sqrt{134}}{2*3}=\frac{24-12\sqrt{134}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+12\sqrt{134}}{2*3}=\frac{24+12\sqrt{134}}{6} $
| 0.5x+x/3=0.25x+3 | | 0.5x+x/3=0.3 | | Y-18=-9x | | 5n-20=7n-80 | | (5/8)(2x+1)-(2/9)=(5/(12))(x-2)-(5/6) | | 7x+19=3(4x-7) | | n-1.4=2.6 | | n+2.3=7.9 | | n-8=100 | | 1+x=3(5x+4) | | (5x-2)(x+5)=3 | | 1+x=4(5x+3) | | 9^7x=7^(x+2) | | 4+x=3(5x+1) | | 3+x=4(5x+1) | | 3+x=5x(4+1) | | 6u+36=3(u+2) | | 9c+160=5F;c | | 3(x-2)-(5-2x)=34 | | 36=3(2x+1)+3 | | (5b-14)=(2b+11) | | (5x-2)(x+5)=8 | | (X-8)(x-2)=x2-8x+ | | C(x)=0.07x+14.50 | | 5x-4=–2(3x+2) | | 32(19-3.5x)=14(3x-7)+43.8 | | 10000=250x-11150 | | F(x)=-6x^2+10x+1 | | 10000=250x-11000+150 | | 2w-38=-7(w+8) | | 40x-10x+900=P | | 5x-4x+9=2x-3 |