If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-16x+4=0
a = 3; b = -16; c = +4;
Δ = b2-4ac
Δ = -162-4·3·4
Δ = 208
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{208}=\sqrt{16*13}=\sqrt{16}*\sqrt{13}=4\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-4\sqrt{13}}{2*3}=\frac{16-4\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+4\sqrt{13}}{2*3}=\frac{16+4\sqrt{13}}{6} $
| 34h+80.26=9501 | | 2(x+1)2+13(x+1)+20=0 | | 2x4=128x | | 0=c•21 | | 13+5(2n–1)=38 | | 3.01s=6.02 | | 96-v=237 | | r+354=1+3 | | 4n–2=18 | | 4x-66°=2x | | 5(x-7)=2x+4 | | -10=2.5h | | 4x2-44=0 | | (a+1)/18=(a-1)/27 | | 8m+95=−87m+58, | | (9.4)/(3.4)=(6)/(x) | | 3x-18=6x-9 | | x-7/3=1/6 | | 8x-12=12x+12 | | 2x1=4x-27 | | 0=-4(x^2-49) | | 2=t2t= | | 9=3dd= | | 7^{8x}=25 | | 2x+14=2x+ | | 7p²-24p+16=0 | | 12y-6+15=33 | | 25-4n,n=6 | | |-8n-8=16 | | (4b+1)/(3b-1)=2 | | 2-(b-4)=12 | | 5p=7p=10 |