If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4x^2-44=0
a = 4; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·4·(-44)
Δ = 704
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{704}=\sqrt{64*11}=\sqrt{64}*\sqrt{11}=8\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{11}}{2*4}=\frac{0-8\sqrt{11}}{8} =-\frac{8\sqrt{11}}{8} =-\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{11}}{2*4}=\frac{0+8\sqrt{11}}{8} =\frac{8\sqrt{11}}{8} =\sqrt{11} $
| (a+1)/18=(a-1)/27 | | 8m+95=−87m+58, | | (9.4)/(3.4)=(6)/(x) | | 3x-18=6x-9 | | x-7/3=1/6 | | 8x-12=12x+12 | | 2x1=4x-27 | | 0=-4(x^2-49) | | 2=t2t= | | 9=3dd= | | 7^{8x}=25 | | 2x+14=2x+ | | 7p²-24p+16=0 | | 12y-6+15=33 | | 25-4n,n=6 | | |-8n-8=16 | | (4b+1)/(3b-1)=2 | | 2-(b-4)=12 | | 5p=7p=10 | | 5^(r+2)*5r=5^(-3r) | | 3p-6=27.P= | | 3x+4-6=5 | | 3^4x=27^x+11 | | 9/5c=113+32 | | -7(3x-5)=56 | | 5(x+3)=3x-4 | | 7/18=21/y | | 12x+12=15x-5 | | 12-2x=6+4x | | 8-14x-4+11x=25 | | -5(w+2)-w-7=-6(w+5)+13 | | Y=-8x^2+3-7 |