If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-12x=0
a = 3; b = -12; c = 0;
Δ = b2-4ac
Δ = -122-4·3·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-12}{2*3}=\frac{0}{6} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+12}{2*3}=\frac{24}{6} =4 $
| -3(n–11)=-9 | | X^2+2x-0.2=0 | | 2=d4–2 | | 8+7r=7+6r | | -12=-3t+6 | | x=2+2x4-6 | | 2^(5x+2)=6^(x) | | X^=6y | | 2(x-3)=x-7 | | 4.67y+2=14 | | 10-r=9r | | 4x(2x+3)=6x+94x(2x+3)=6x+9. | | 5+9/3x=4 | | 0.4=1.6k | | 4x(2x+3)=6x+9 | | 10y^2+13-3=0 | | -7p+9=-6p | | 9x2-6x=0 | | 53-d=37 | | 10z^2-19z-6=0 | | 3x^2+44x-120=0 | | (4x+0)(x-8)=0 | | 10z^2-15z-4z-6=0 | | (k+9)(k+3)+5=0 | | 3x+8+7x+2=90 | | 15z^2+1z-6=0 | | 15z2+1z−6=0 | | 180=140+(x+51) | | 55000=5x^2+1000x+5000. | | 180=109+(x+74) | | 15y2−13y+2=0 | | 180=130+(8x+2) |