If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-6x=0
a = 9; b = -6; c = 0;
Δ = b2-4ac
Δ = -62-4·9·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6}{2*9}=\frac{0}{18} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6}{2*9}=\frac{12}{18} =2/3 $
| 53-d=37 | | 10z^2-19z-6=0 | | 3x^2+44x-120=0 | | (4x+0)(x-8)=0 | | 10z^2-15z-4z-6=0 | | (k+9)(k+3)+5=0 | | 3x+8+7x+2=90 | | 15z^2+1z-6=0 | | 15z2+1z−6=0 | | 180=140+(x+51) | | 55000=5x^2+1000x+5000. | | 180=109+(x+74) | | 15y2−13y+2=0 | | 180=130+(8x+2) | | 15y2−13y+2=015y2-13y+2=0. | | 180=89+(97+x) | | 180=130(8x+2) | | 5.5q-4.8-7.0q=-2.1-1.5q-2.7 | | 23=x-(32*4) | | -6=-7+x/3 | | p2+18p+80=0p2+18p+80=0 | | x=2/5(x+1) | | 5.9q-4.1-7.6q=-2.2-1.7q-1.9 | | 9^x=50 | | (x+2)(x+3)+9x+42=0 | | 19=x-(32*4) | | 3x+x-20=40+x | | -8r-4=2r+16 | | (7x^2+5x)-(9x-1)+(4x^2-4)=0 | | 12w^2-w-1=0 | | 6x+7-7x+3=5x-6x-4 | | 3-4r=8r+8 |