If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-10x-6=0
a = 3; b = -10; c = -6;
Δ = b2-4ac
Δ = -102-4·3·(-6)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{43}}{2*3}=\frac{10-2\sqrt{43}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{43}}{2*3}=\frac{10+2\sqrt{43}}{6} $
| O=(2x+7)(2x+7)(2x+7) | | -2=-4+7w | | -2+2x=32 | | 13r+6=12r+21 | | -27-4x=-(-2x+3) | | 20r-15=4r+1 | | 37+x=57 | | -7-4x3=9 | | k-7-6k=-9+4-5k-2 | | -24-6x=-4(3x-3) | | c-4/2=9 | | 3x+9+5x=81* | | 10) 4n–8=3n+2 | | 3x-(x+4)=12+x | | 8-4c=32 | | 6x-132=366 | | 3(y+7)=2y+10+y | | 9p–2=–20 | | 3x+(-2)=23 | | x÷7=-8 | | (x-9)-3=-4(2x+4) | | 4n–8=3n+2 | | (5x+150)=2x | | 4+6a=20 | | -9-n=-(8+n) | | -40=-8/5r | | 2(3x-4)=-2x+2 | | 64z+72=0 | | 3(2m-2)=5m-7 | | 6(x-2)-3x=3(x-4) | | 7=3a–14 | | -3x1=-5x4 |