If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+7x+3=0
a = 3; b = 7; c = +3;
Δ = b2-4ac
Δ = 72-4·3·3
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{13}}{2*3}=\frac{-7-\sqrt{13}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{13}}{2*3}=\frac{-7+\sqrt{13}}{6} $
| -2m=-26 | | x=20+40 | | 7/3z+10=2/9z-5 | | F+2(x-2)+3x=35 | | X^2-3x+55=5x-10 | | 8w=92.8 | | 2(2x+30)=x | | 3(4+4)=5y-9 | | 3(x–2)+7x=1/2(6x–2) | | x^{2}+10x+20=0 | | 5z=2z-15 | | 4(x*3=16 | | 8x10^3x=1 | | 45c=9c | | (1/2)x+5=15 | | r^2+4r+68=0 | | 0.2^x/0.1^x=4 | | X.31/3=41/2x= | | x6−63x3−64=0x6-63x3-64=0 | | f(-1)=5(-1)³+(-1)²-7 | | 5x+6=+18 | | Y=80,5+0,9x | | 53−j=33 | | 85=35+2t | | 2(x+9)^2+9=0 | | x-2.01=5.5x= | | a+14=50 | | -6x-5+2x=3(-x+7) | | 3(x-2/3)=6/7 | | 78x+780=3666 | | 4^x-1=35 | | 2(7-x)=3(-4-2) |