7/3z+10=2/9z-5

Simple and best practice solution for 7/3z+10=2/9z-5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/3z+10=2/9z-5 equation:



7/3z+10=2/9z-5
We move all terms to the left:
7/3z+10-(2/9z-5)=0
Domain of the equation: 3z!=0
z!=0/3
z!=0
z∈R
Domain of the equation: 9z-5)!=0
z∈R
We get rid of parentheses
7/3z-2/9z+5+10=0
We calculate fractions
63z/27z^2+(-6z)/27z^2+5+10=0
We add all the numbers together, and all the variables
63z/27z^2+(-6z)/27z^2+15=0
We multiply all the terms by the denominator
63z+(-6z)+15*27z^2=0
Wy multiply elements
405z^2+63z+(-6z)=0
We get rid of parentheses
405z^2+63z-6z=0
We add all the numbers together, and all the variables
405z^2+57z=0
a = 405; b = 57; c = 0;
Δ = b2-4ac
Δ = 572-4·405·0
Δ = 3249
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{3249}=57$
$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(57)-57}{2*405}=\frac{-114}{810} =-19/135 $
$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(57)+57}{2*405}=\frac{0}{810} =0 $

See similar equations:

| F+2(x-2)+3x=35 | | X^2-3x+55=5x-10 | | 8w=92.8 | | 2(2x+30)=x | | 3(4+4)=5y-9 | | 3(x–2)+7x=1/2(6x–2) | | x^{2}+10x+20=0 | | 5z=2z-15 | | 4(x*3=16 | | 8x10^3x=1 | | 45c=9c | | (1/2)x+5=15 | | r^2+4r+68=0 | | 0.2^x/0.1^x=4 | | X.31/3=41/2x= | | x6−63x3−64=0x6-63x3-64=0 | | f(-1)=5(-1)³+(-1)²-7 | | 5x+6=+18 | | Y=80,5+0,9x | | 53−j=33 | | 85=35+2t | | 2(x+9)^2+9=0 | | x-2.01=5.5x= | | a+14=50 | | -6x-5+2x=3(-x+7) | | 3(x-2/3)=6/7 | | 78x+780=3666 | | 4^x-1=35 | | 2(7-x)=3(-4-2) | | 22-u=45 | | 9x1=5x+15 | | 9x1=5x+15=20 |

Equations solver categories