If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-2=0
a = 3; b = 5; c = -2;
Δ = b2-4ac
Δ = 52-4·3·(-2)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*3}=\frac{-12}{6} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*3}=\frac{2}{6} =1/3 $
| y-13÷2=6 | | 7)x-3)=5 | | X+15=100/x | | 23=6(x+3) | | 57x+8=54x+9 | | 30x^2+74x+60=0 | | 4(x-16)-(8-x)=10(x+1)-2(15+8x) | | 3f^2+87f+18=0 | | 3x^2+27x+1200=0 | | 4x+24=3+x | | 3x²+10x-3600=0 | | -6t+5t+3=4+t | | 7y+4=13 | | 10n+2=7n+25 | | 3+7x(4-1)/3=0 | | 5x^2+8x-4=0. | | x+2/x+3+5=1/2 | | 3(x+40)+2x=8745 | | 71-x=56 | | 6x+6=20-7x | | X/2+4x=180 | | 4x^2=0,16x | | Y-4/3+3y=4. | | (1/2)x+4=(2/3x+1 | | (10198593.60-x)/4554481.60=0.12 | | 10198593.60-x=54657.79 | | (5-x)/3=0 | | (5-x)/3=0.12 | | 5p-3=8*5-1 | | x/(x+1)=0.78 | | (3x+10)=90° | | 55=(2x-5)+(2x-5)+x |