If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-1300=0
a = 3; b = 5; c = -1300;
Δ = b2-4ac
Δ = 52-4·3·(-1300)
Δ = 15625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15625}=125$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-125}{2*3}=\frac{-130}{6} =-21+2/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+125}{2*3}=\frac{120}{6} =20 $
| 456/3=n | | a-7.6=-4 | | -54=-3g | | 6v-13=71 | | 1a=2+3a+8 | | 11•a-4=73 | | 1-2x/3+2+x-x-1/15=2-x/2-x+1/6+x-3/5 | | 20(2)+26.25y=250 | | 2b=3b-2-7b | | 87-2x=16 | | 9x-3=3×+21 | | 7×x-321=449 | | 3=-1.5h | | 10=5t+45 | | 71-x=16 | | 6x-5x=7x+6 | | 12=6(u-97) | | 12x+2x+2x-12x-x=12 | | (x+2)(x+5)=3(4x-3)+(5-x) | | 8x-1=-65 | | 12=69(u-97) | | 4×k=8×40 | | 8t-2t-t-t-3t=19 | | 9(f-87)=18 | | 13+x/3=24 | | 2x-x=-15-6 | | x+2/2-x=3/5 | | 19=b/4+15 | | 4s-s+4s=7 | | 9+x=12-x+x | | 3(+2x)=x-15 | | 5x+2=78° |