If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+4x-12=0
a = 3; b = 4; c = -12;
Δ = b2-4ac
Δ = 42-4·3·(-12)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{10}}{2*3}=\frac{-4-4\sqrt{10}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{10}}{2*3}=\frac{-4+4\sqrt{10}}{6} $
| 12x^2-160=2x^2 | | -29=r/19 | | 4x(7x-11=) | | 2(x-5)-2=x-12+x | | (x+3)(x-1)/2=12 | | v/4−2=1 | | 8-8(1+3x)=-21+3 | | -3+58=x-2 | | 3y+8=2y-8+y | | 25−5w=10 | | 5(x)+15(x+1)=35 | | 430=-16t^2-2t+763 | | 4=4(x=+10) | | -1+8y=11 | | -17+5x=5(x+5)+8 | | 5x+37=180 | | 2c+(3c–4)=–4–1c | | {X+18=y | | 4(2x+6)=-47+55 | | (2x+4)∘(2x+4)=(6x+3)∘(6x+3)(7x+8)∘(7x+8)∘ | | 4(2x-3)-3=8(2x+5 | | 2r-5.3=8.7 | | 2/93x+2)=100 | | 4(2x-3)-3=8 | | 2x-17+2x+12=180 | | X2-6x+15=3x-5 | | 35=7+4b | | 16f-14=95-7f | | 7w−14=63 | | 5(x=9)=5 | | -3x=15=3{5-x} | | 2x-9=11;10 |