3x2+4=9x2-32

Simple and best practice solution for 3x2+4=9x2-32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x2+4=9x2-32 equation:



3x^2+4=9x^2-32
We move all terms to the left:
3x^2+4-(9x^2-32)=0
We get rid of parentheses
3x^2-9x^2+32+4=0
We add all the numbers together, and all the variables
-6x^2+36=0
a = -6; b = 0; c = +36;
Δ = b2-4ac
Δ = 02-4·(-6)·36
Δ = 864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{864}=\sqrt{144*6}=\sqrt{144}*\sqrt{6}=12\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{6}}{2*-6}=\frac{0-12\sqrt{6}}{-12} =-\frac{12\sqrt{6}}{-12} =-\frac{\sqrt{6}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{6}}{2*-6}=\frac{0+12\sqrt{6}}{-12} =\frac{12\sqrt{6}}{-12} =\frac{\sqrt{6}}{-1} $

See similar equations:

| 5x+3+x=1+2x+18 | | -136=-8y+8 | | 9​(x+7​)-7​(3x-9​)=11 | | X(5x-4)=(5x+7)(x-2) | | 5w+3=2w+15 | | 3X2+4=9x-32 | | ((12-x)/2)=4x | | 3x-16=8-5 | | z-10=(7z)-16 | | -4(x+3)-x-4=-5(x+4)+4 | | -4(k+3)-k-4=-5(k+4)+4 | | 2x-3/4+6=-1 | | 5+3(3x-6)=9-4(2x+1) | | 5n-3=(n+9) | | 2/3y=4/5 | | 2(3z+2)-9=25 | | (4x-1)=2x+13 | | 8x-12=-4(-2x+3) | | 2(x-6)-4(x-2)=-12 | | x^2-3x-33=0 | | 7=-3(2s+1) | | x^4-x^3-4x^2+x+1=0 | | x^4-x^3+10x^2-10x+4=0 | | 11(z+4)-3(z-4)=3(z-1)+4(z-4) | | -8(v+4)+2v+5=5v+8 | | 12nn=9 | | 9x20=-7 | | 2-3(8x-4x)=0 | | 3-7(5x+6)=4 | | y=713(2) | | 2x-1=20-x | | 2y²-2y-11=0 |

Equations solver categories