If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+42x=96
We move all terms to the left:
3x^2+42x-(96)=0
a = 3; b = 42; c = -96;
Δ = b2-4ac
Δ = 422-4·3·(-96)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-54}{2*3}=\frac{-96}{6} =-16 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+54}{2*3}=\frac{12}{6} =2 $
| (1/7t)+(1/5t)=1 | | 2/3x-1/5=x-1 | | 120=x=180 | | 8v^2+7v+9=0 | | (n/2)-1.25=5 | | x+4*6=192 | | 0.09w=1, | | g/5+13=24 | | 13/4v=39 | | 31/4v=39 | | 8p−2(p+7)=16 | | |13x+5|=18 | | 2x+8+5x-2=94-x | | 6^4x+1=5^x-3 | | 2(2x+1)-6x=13 | | -2.1n-2.16=-8.46 | | 42/t=21/12 | | 2/5+n=5/5 | | 2.16n–2.1n=-8.46 | | 0.12+0.32(x+4)=0.20 | | 0.12x+0.32=0.20 | | 0.12(x+4)+0.32=0.20 | | (5+x)^3+2x-17=103 | | 2/3(x-3)=1/2(x-1) | | 2^3x+7=39 | | n+42=100 | | t+5.4=12.6 | | 8(2x+2)=3x+8(x-3) | | h+12.4=-12.4 | | 47+x+x=180 | | 13+9=m | | 5/6x-10=1/3x-3 |