If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+30x+48=0
a = 3; b = 30; c = +48;
Δ = b2-4ac
Δ = 302-4·3·48
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-18}{2*3}=\frac{-48}{6} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+18}{2*3}=\frac{-12}{6} =-2 $
| p+6=36 | | 14=11+w/8/6 | | 480=3x+3(x+14) | | 50=3{s+16}-2{s-2} | | 4.8+c=7.3 | | x1=9 | | 5(12)=g | | -4+9x2+9;x=0 | | 200=20(4+y-3) | | 6x+5+12x-6;x=2 | | 8q=96 | | x-7/20=3/8+7/20 | | 10^-5x=0.0001 | | 20+6x-1+x+14=180 | | 20+6x-1+x+14=18 | | 3/4/x=13/4 | | x5=64 | | x*4/7=3/7 | | 59k−7=6k | | 2x-14=x=8 | | x*4+30=x*3+50 | | 29+x/2=15 | | X-9+x+3(x-9)=39 | | x−85=12 | | 65+3x-10+2x=180 | | -5.6=h/5+12 | | 7n^2-14-50=7 | | 9(6-12n)-10(n-3)=-34 | | Y=2x2+36x+170 | | 2(2y-7)=46 | | 9x+5=13x-43 | | -15=m+-17 |