If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+18x=0
a = 3; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·3·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*3}=\frac{-36}{6} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*3}=\frac{0}{6} =0 $
| 1.2x=6=-1.2 | | 1/2x-0.4=2.6 | | 1.5x+25=38.50 | | 8x(-3)=24 | | 5x/6=34=9 | | -3(v+11)=-6 | | Y=29-4x | | 5/8x+-9=19 | | 4-y/10=1 | | w/38.7-5=51.06 | | -92=4/3r | | 38.7/w-5=51.06 | | 7/20/z=6/5 | | Y=0.25x+15 | | 4(x+4)+5(2x-7)=51 | | 5.1-7.9x-1.8=8.04 | | x/4-2.3=-13.5 | | n+(-6)=10 | | 1/6y+6=10 | | 20+13x=15.71 | | 6y^2+y-64=0 | | 151-y=228 | | 7(y-3)=-2(-2y+4)+10 | | -8h+6=-6h | | 4(2x-7)=60 | | 3.5=x-9.3 | | 9k^2+49k-30=0 | | 11x+1-15x=-71 | | 9k+49k-30=30 | | 25x+1.50=38.50 | | 5.2+v/4=-1.2 | | -100=b+(-27) |