If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+16x=35
We move all terms to the left:
3x^2+16x-(35)=0
a = 3; b = 16; c = -35;
Δ = b2-4ac
Δ = 162-4·3·(-35)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-26}{2*3}=\frac{-42}{6} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+26}{2*3}=\frac{10}{6} =1+2/3 $
| 8x-1=323 | | Q-5+6q=73 | | C=9/8(k-33) | | 2(3x)=210 | | 223x=87x | | -7(2+3x)=98 | | -1(x+3)=6 | | (x+1)×2+3=13 | | -1(-3-x)=6 | | 1(-2y+6)=10 | | 10x+40+6x=360 | | 6+3×s=30 | | 6x+60+4x=360 | | -2(2x-3)=3(x-1)+10 | | 4×(n+7)=n-44 | | 8x-23=137 | | x/2+1/4=3/4+-5 | | 5/3(x-7)=-1 | | -7u+13.6=2.4 | | 5=q-1+1/4 | | 6n-47=9=8n | | 290000=580000*(0.9)^x | | (8x+61)/9=-3 | | 0.9*x=0.5 | | 3/c =5 | | 3c =5 | | 5/2x+7/4=3+7/6x | | 5/2x+7-4=3+7/6x | | 11/8x2=190 | | 2.2/19=3/x | | 12=9−k | | X+(x+1)+(x+2)=5252 |