3x+4/5x=7-2x

Simple and best practice solution for 3x+4/5x=7-2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+4/5x=7-2x equation:



3x+4/5x=7-2x
We move all terms to the left:
3x+4/5x-(7-2x)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
3x+4/5x-(-2x+7)=0
We get rid of parentheses
3x+4/5x+2x-7=0
We multiply all the terms by the denominator
3x*5x+2x*5x-7*5x+4=0
Wy multiply elements
15x^2+10x^2-35x+4=0
We add all the numbers together, and all the variables
25x^2-35x+4=0
a = 25; b = -35; c = +4;
Δ = b2-4ac
Δ = -352-4·25·4
Δ = 825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{825}=\sqrt{25*33}=\sqrt{25}*\sqrt{33}=5\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-5\sqrt{33}}{2*25}=\frac{35-5\sqrt{33}}{50} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+5\sqrt{33}}{2*25}=\frac{35+5\sqrt{33}}{50} $

See similar equations:

| 12n−20n+6=2 | | 7x+9=9x-23=180 | | 59=4h+-33 | | -2(z+11)=7 | | x^2+-9=-15 | | (5x-3)+17+(13x+4)=180 | | -21=3(n-99) | | 43=-10x^2-6x | | –20+17q=q+14q+20 | | 5x-16/14=24 | | 37-5(5x-1)=12 | | 6-2w=11-(8w-7) | | 220-y=99 | | 4a-11=2a+3 | | 7(x+2)-4=5x+2 | | 4x-42=180 | | 90=8r+18 | | h/9=5. | | x+1/3=5/2 | | -6(3y-3)+6y=6(y+5) | | 55=-v+157 | | 12n−=20n+6−2 | | (5x+20)+(3x+35)=180 | | 3(2t+9)=81 | | 7(x+12)-4=+2= | | 4x=1,080 | | b+17=-21. | | 4(f+2)+f=-8 | | 1x/3=2x-13 | | 6(b+5)-14=52 | | 5r-4-2=-17 | | 5-x=274 |

Equations solver categories