3x+3/2x+4=4x-5/2x

Simple and best practice solution for 3x+3/2x+4=4x-5/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x+3/2x+4=4x-5/2x equation:



3x+3/2x+4=4x-5/2x
We move all terms to the left:
3x+3/2x+4-(4x-5/2x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
3x+3/2x-(+4x-5/2x)+4=0
We get rid of parentheses
3x+3/2x-4x+5/2x+4=0
We multiply all the terms by the denominator
3x*2x-4x*2x+4*2x+3+5=0
We add all the numbers together, and all the variables
3x*2x-4x*2x+4*2x+8=0
Wy multiply elements
6x^2-8x^2+8x+8=0
We add all the numbers together, and all the variables
-2x^2+8x+8=0
a = -2; b = 8; c = +8;
Δ = b2-4ac
Δ = 82-4·(-2)·8
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{2}}{2*-2}=\frac{-8-8\sqrt{2}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{2}}{2*-2}=\frac{-8+8\sqrt{2}}{-4} $

See similar equations:

| 199=4x+5(6x-1) | | 1/2x-1=12 | | 0.44x+x=2236 | | 2y=5+5 | | 5=f/7 | | 5/6p-4=2 | | 90=15n | | (M-5)(m-2)=0 | | -12=-7k+3k | | 70=-7x | | 20x-1=17x=11 | | x-5=12-3 | | r-7r=-6 | | 5/6x-1=1/6x+15 | | -1/2=2=y | | (100+4q^2)/(q)=8q | | 4x+3=-44 | | 4m2+4m=120 | | 1.475=r/8+1.8 | | 16x-26=28x-125 | | 7+3+x=25-5 | | Y=280-20x | | -5+|x+1|=-2 | | 10x=4.9185 | | -3(6-2y)=4(2y-3)-8 | | (5x-3)^2=49 | | (5x-1)^2=196 | | 8=2+r/2 | | 138=x(x+12) | | 5y+15=60 | | 2x+3(-x-4)+4=12 | | 0.75d-11=0.25-6.5 |

Equations solver categories