If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x+13=(9x-15)(2x-8)
We move all terms to the left:
3x+13-((9x-15)(2x-8))=0
We multiply parentheses ..
-((+18x^2-72x-30x+120))+3x+13=0
We calculate terms in parentheses: -((+18x^2-72x-30x+120)), so:We add all the numbers together, and all the variables
(+18x^2-72x-30x+120)
We get rid of parentheses
18x^2-72x-30x+120
We add all the numbers together, and all the variables
18x^2-102x+120
Back to the equation:
-(18x^2-102x+120)
3x-(18x^2-102x+120)+13=0
We get rid of parentheses
-18x^2+3x+102x-120+13=0
We add all the numbers together, and all the variables
-18x^2+105x-107=0
a = -18; b = 105; c = -107;
Δ = b2-4ac
Δ = 1052-4·(-18)·(-107)
Δ = 3321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3321}=\sqrt{81*41}=\sqrt{81}*\sqrt{41}=9\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(105)-9\sqrt{41}}{2*-18}=\frac{-105-9\sqrt{41}}{-36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(105)+9\sqrt{41}}{2*-18}=\frac{-105+9\sqrt{41}}{-36} $
| x²-5x=9x | | x2+6x-95=0 | | 8q-q=-7 | | –4p-3=2+p | | 4√t=√3t+6 | | x^2-5x=9x-12 | | 12{x+8}=11x-5 | | x²-5x=9x-12 | | -111-5x=33-13x | | 23x+25.50=40x+21.25 | | -6x-10=10x+6 | | 6x-3x+10=40 | | r÷-11=-3 | | 5(2b+13)=180 | | 46=3x+2 | | -1/5=2/5x+9/5 | | 4(x=4)=24 | | 26=-7(y+7)–8y | | 8x-4=5x-22 | | 30x-45=5656 | | 30x-45=1/4 | | 3x-11=74 | | 14=20–3(r–9) | | 7r=6r+12 | | 2(w-5)-6=-3(-3w+6)-3w | | 64=n+24 | | 3(y-1)=5y+3-2(-7y-1) | | 5(6x+9)=255 | | 9^4x−9^2x−72=0 | | 6u-6+2(2u+3)=-4(u+1) | | v=7=-3v-5 | | c 2=6c−55 |