If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(2x-3)-(2x-3)=0
We multiply parentheses
6x^2-9x-(2x-3)=0
We get rid of parentheses
6x^2-9x-2x+3=0
We add all the numbers together, and all the variables
6x^2-11x+3=0
a = 6; b = -11; c = +3;
Δ = b2-4ac
Δ = -112-4·6·3
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-11)-7}{2*6}=\frac{4}{12} =1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-11)+7}{2*6}=\frac{18}{12} =1+1/2 $
| x-215=246 | | -4y+3=7 | | -11+3(b+15)=7 | | 27/t=29 | | 12,39+x=25,28 | | 9x+4=49x= | | -x^2+8x-3000=0 | | 7p^2-4p=40-3p^2 | | -x^2-8x-3000=0 | | 11x+12—8x=—3 | | x-27=-90 | | 10x^2-4x-40=0 | | x+6,6=23,4 | | (x+15)/14=53 | | 11,75+x=21,85 | | 0.9x+0.8=2.6 | | 49^x=7^2 | | x+8=10x-4 | | 142+x=210 | | 10x+5=6x+4 | | 5=4t+ | | x+9=25,7 | | 2/3x+(3-2x)^2/18-(2x-1)(2x+1)/18=x-5/3+x+4/6-5/9x | | 9x-25=7x+15 | | 9/17*x=15/34 | | 5x(2x-1)+10=7(2x-1) | | ((x+1)/(x+2))+((x+3)/(x+4))=(x+15)/(x^2+6x+8) | | 5^2x=7^x | | 16−3p=2/3+5 | | (2x+3)²+(x-3)²=9 | | 0.2x+0,4=0,3x+0,6 | | x(x+6)=8(x33 |