If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(2x+3)=2x(x+4.5)+2
We move all terms to the left:
3x(2x+3)-(2x(x+4.5)+2)=0
We multiply parentheses
6x^2+9x-(2x(x+4.5)+2)=0
We calculate terms in parentheses: -(2x(x+4.5)+2), so:We get rid of parentheses
2x(x+4.5)+2
We multiply parentheses
2x^2+9x+2
Back to the equation:
-(2x^2+9x+2)
6x^2-2x^2+9x-9x-2=0
We add all the numbers together, and all the variables
4x^2-2=0
a = 4; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·4·(-2)
Δ = 32
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32}=\sqrt{16*2}=\sqrt{16}*\sqrt{2}=4\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{2}}{2*4}=\frac{0-4\sqrt{2}}{8} =-\frac{4\sqrt{2}}{8} =-\frac{\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{2}}{2*4}=\frac{0+4\sqrt{2}}{8} =\frac{4\sqrt{2}}{8} =\frac{\sqrt{2}}{2} $
| 13-4z/3=5 | | a/4+17=10 | | 0.3=0.3x-72 | | 32w=89 | | 8-3a=5 | | 3x+4=9.5÷2 | | 4a/2(a+1)=0 | | 5x/7=-1 | | 3x+4=9.5™¢§ | | x^2+x=1.7 | | x+x+x*2/3*43/x^2=22+22 | | 1-2y+3y=y-2y+1 | | x+x-5+x-10=225 | | 10-3x=x+10-x | | 2x²+13x-15=0 | | -5y+8y+8=8y-3 | | (x-4)(x+11)=(x-12)= | | x/7=1,9 | | 60-(5x+6)=2(x+3)+x | | 7x=16,8 | | 4z^2+6z+9=0 | | 5x-×=-12 | | 4x-3x+7=2x+x+7 | | 3w(820/6-6w/6)=16500 | | 10x^2+80x+158=0 | | 3w(820-6w/6)=16500 | | -0x+13=2x+15 | | x-50=0.5x | | 180x=10 | | (2+√3)^x+(2-√3)^x=4 | | 1.3x+66.4=3.4-9.2x | | 3y+27=7y-27 |