If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x(2)-50=180
We move all terms to the left:
3x(2)-50-(180)=0
We add all the numbers together, and all the variables
3x^2-230=0
a = 3; b = 0; c = -230;
Δ = b2-4ac
Δ = 02-4·3·(-230)
Δ = 2760
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2760}=\sqrt{4*690}=\sqrt{4}*\sqrt{690}=2\sqrt{690}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{690}}{2*3}=\frac{0-2\sqrt{690}}{6} =-\frac{2\sqrt{690}}{6} =-\frac{\sqrt{690}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{690}}{2*3}=\frac{0+2\sqrt{690}}{6} =\frac{2\sqrt{690}}{6} =\frac{\sqrt{690}}{3} $
| 192÷12+6=r | | 6-3v=-3+7(9+5v) | | 10/x=4/7 | | 2=3m−1 | | 25x-14=13+2x | | 12=r3+ 9 | | 2x+(3x+1)=21 | | 19a+2a-19a-a=12 | | 1/5(x)=180 | | w*3=512 | | n/6-3=-11 | | x+(x•2)+(x-50)=180 | | x63-4x^2=0 | | 12x+8x=1600 | | x+1/2=-9 | | 9x+3=6+6x | | 9+2y=–y | | -19=4h+-3 | | 10-7r=15 | | x–12=45 | | p^2=12=8p | | -1/5x=2x+3 | | 6(4a+3)=+5a | | -5(3x+2)=35 | | 4g−5=4g | | -1x-25=-17 | | 3x-6=-2x+2 | | -2.4h+3.7=-16.1+3.1h | | 8+9n=8n | | 0.5–3x=1.7 | | 40+90+(180-x)=180 | | (2x+30)+(6x-12)=180 |