If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3w^2-60w+300=0
a = 3; b = -60; c = +300;
Δ = b2-4ac
Δ = -602-4·3·300
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$w=\frac{-b}{2a}=\frac{60}{6}=10$
| (3x+23)+(4x+1)=180 | | 3w^-60w+300=0 | | (3x+23)=(4x+1) | | (3x+23)+4x+4=180 | | (3x+23)+4=90 | | (3x+23)+4x=180 | | (3x+23)=4 | | 36s^2=16 | | (4x+54)=(3x+77) | | (3x+77)=(4x+54) | | 4^x=16^3.4 | | (4x+8)=64 | | (3x-5)+92=180 | | 92=(3x-5) | | (3x-5)=92 | | X/22x-68=12+2x | | -2y=4y+42 | | 1/2m-2.5=5.5 | | (6x-2)=(3x+2) | | 2a+5-3a=10a-4+3 | | 716/1000=x/60 | | 1-(1+0.05)^(-x)=0.5 | | (3x+6)=126 | | 4a-12=64 | | 5(y+5)-3y=35 | | -24=2(x-8)-4x | | 14=4(w+8)-6w | | 5(n+3.5)=45 | | 2x-70=40 | | -0.6(m-1)=3 | | 14x2=16x | | 5^x=53 |