If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3v^2+75v=0
a = 3; b = 75; c = 0;
Δ = b2-4ac
Δ = 752-4·3·0
Δ = 5625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5625}=75$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(75)-75}{2*3}=\frac{-150}{6} =-25 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(75)+75}{2*3}=\frac{0}{6} =0 $
| 15z-21-18z+22=32z-52-17 | | 75=1.5x+1.5x+x+x | | 7.25x=60 | | 6m-3(m-1)+2(m-2)/6=1 | | 3=-48a | | x+(-18)=-11 | | k+8=22 | | 10x+10=-2x-6 | | 1f-0.75=0.50-0.45 | | x/2-x/3=1/4+1/5 | | 5a^2=12a-4 | | 2/5y+3=13 | | 120+32+x=90 | | -58=-u/4 | | 30x=9-7 | | 3y=18-5 | | m+6.2=85 | | 3(2x+1)=5x7 | | 1p=20 | | 7x^2+3=33 | | 3(2x1)=5x7 | | 2x+5)+63=90 | | -56/n=7 | | 64.75=7x | | 2/5(9-t)=28 | | ((2/5)(t-9))=28 | | 121=b^2 | | q^2=166 | | -13+3h=17-7h | | 2(3x-4)-2=x-10+3x | | 0.7(10x+14)=3.1(0.2x+5) | | 3x-13+x=180 |