If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+16u+16=0
a = 3; b = 16; c = +16;
Δ = b2-4ac
Δ = 162-4·3·16
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8}{2*3}=\frac{-24}{6} =-4 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8}{2*3}=\frac{-8}{6} =-1+1/3 $
| 8b+12=-36 | | 6+5m=56 | | a+19=39 | | .80x-8=3 | | 6=3(v+5)-6v | | t=17=3 | | 8=c-5 | | 3(x-5)=-2-10 | | 8w+50=120 | | /9m-27+3m=7m+43 | | .75=50,1=x | | 19x+1=3=9x-3 | | 6a+7=3a/4+1/2a | | (3x-2)=144 | | 61=6x+3x-2 | | (3x+109)+(21+31)=180 | | -1=2+r/2 | | -2x-6+(1/4x)-3=90 | | 8x+10=4x+8 | | 5x+4=2x+52 | | (w/2)-3=w/3 | | 3x+2x+4x=196 | | 2(a+4)=3a(4)-14 | | 3x+3x+2x+4x=196 | | 6x+2x+4x=196 | | 420/x=69 | | X+2x+4x=196 | | 6a+a-4a=a+14 | | 14x-3+15=13x+14 | | 4/3n=-19 | | 1^2+2^4+c^2=8 | | x+(-24)=64 |