-2x-6+(1/4x)-3=90

Simple and best practice solution for -2x-6+(1/4x)-3=90 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for -2x-6+(1/4x)-3=90 equation:



-2x-6+(1/4x)-3=90
We move all terms to the left:
-2x-6+(1/4x)-3-(90)=0
Domain of the equation: 4x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-2x+(+1/4x)-6-3-90=0
We add all the numbers together, and all the variables
-2x+(+1/4x)-99=0
We get rid of parentheses
-2x+1/4x-99=0
We multiply all the terms by the denominator
-2x*4x-99*4x+1=0
Wy multiply elements
-8x^2-396x+1=0
a = -8; b = -396; c = +1;
Δ = b2-4ac
Δ = -3962-4·(-8)·1
Δ = 156848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156848}=\sqrt{16*9803}=\sqrt{16}*\sqrt{9803}=4\sqrt{9803}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-396)-4\sqrt{9803}}{2*-8}=\frac{396-4\sqrt{9803}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-396)+4\sqrt{9803}}{2*-8}=\frac{396+4\sqrt{9803}}{-16} $

See similar equations:

| 8x+10=4x+8 | | 5x+4=2x+52 | | (w/2)-3=w/3 | | 3x+2x+4x=196 | | 2(a+4)=3a(4)-14 | | 3x+3x+2x+4x=196 | | 6x+2x+4x=196 | | 420/x=69 | | X+2x+4x=196 | | 6a+a-4a=a+14 | | 14x-3+15=13x+14 | | 4/3n=-19 | | 1^2+2^4+c^2=8 | | x+(-24)=64 | | 3n/4=-19 | | 9u+5=6 | | 4-8x/25=1/5 | | 11x-83=82 | | 40=4h | | x/3+3.2=-4.3 | | -5.2w=-1.3 | | 72+10x=114 | | 7+y=6y-28 | | 2x+16=14×25÷7 | | Z+(z-6)-2=10- | | -12n-20=- | | 32=9/10kk= | | 32=910kk= | | 21(2-x)+12×=14 | | 3k^2-6k+5=0 | | 8k-(4k-13)=0 | | b/9+1/5=13 |

Equations solver categories