If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-9t-7=0
a = 3; b = -9; c = -7;
Δ = b2-4ac
Δ = -92-4·3·(-7)
Δ = 165
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{165}}{2*3}=\frac{9-\sqrt{165}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{165}}{2*3}=\frac{9+\sqrt{165}}{6} $
| 10d-12=-6d+4(4d-3) | | 0.7d+0.67(3000-d)=0.15(4000) | | -2x=(360÷4) | | (x-2)^2+x^2=10^2 | | 0.8w+0.82(6000+w)=0.43(3000) | | 5×(c+3)+6=61 | | X+(2x-9)+(2x-9)=72 | | -10.5+m/11.27=-2.748 | | -56p-44=176-66p | | 23-2(4+x)=3 | | -2d+18-4d=-18 | | 49x+20=105x+84 | | 4x*x+7x+3=0 | | 8i/(4-3i)=0 | | 8x/(4-3x)=0 | | 4t^2+10t=16 | | 8x-5(-7.26)=29 | | -2/5+v=1/6 | | 3a/10=9 | | 2t^2+5t=8 | | 5p+7=57 | | 3a-2=49 | | 36w=14-17w | | 4/5=u+4 | | X²+4x+4=16 | | 23=13+2v | | -7(y-5)=-6y-9 | | 4/7(3X+2)+3/2x=1/2(7x+10) | | 5(3x+6)=-41+56 | | -5w+24=-1 | | y^2+6y=1 | | 33=-6x+15 |