If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3t^2-32t-64=0
a = 3; b = -32; c = -64;
Δ = b2-4ac
Δ = -322-4·3·(-64)
Δ = 1792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1792}=\sqrt{256*7}=\sqrt{256}*\sqrt{7}=16\sqrt{7}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-16\sqrt{7}}{2*3}=\frac{32-16\sqrt{7}}{6} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+16\sqrt{7}}{2*3}=\frac{32+16\sqrt{7}}{6} $
| 4k+4=12 | | 9x(5x2)=$2x9)x7 | | u+328=8 | | 5x²-6x-3=0 | | 26.2x4.1=107.42 | | 2(x+8)^(2)+9=29 | | 7-4v=5 | | 2+m/3=2 | | 6x-9=15-2x | | 2/3r=10-r | | n/2+7=8 | | -1(x-5)=-3 | | P(n)=-2n2+192n-3640 | | /5x=-2x+49 | | X+(2x-5)=115° | | 9+m/4=8 | | 3=m5− 2 | | -4x2–12x=x | | 7n+4=3n+20 | | 3=m5−2 | | 15+5f=90 | | -7n+10=-88 | | 8 | | 9x^2-36/x-2=0 | | 3(4-a)=a+40 | | 8 | | 8 | | 8 | | 15+5f=2 | | 7=n/1+7 | | 3-n/3=1 | | 27=r+15 |