If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3q+15=(1/2)(q-5)
We move all terms to the left:
3q+15-((1/2)(q-5))=0
Domain of the equation: 2)(q-5))!=0We add all the numbers together, and all the variables
q∈R
3q-((+1/2)(q-5))+15=0
We multiply parentheses ..
-((+q^2+1/2*-5))+3q+15=0
We multiply all the terms by the denominator
-((+q^2+1+3q*2*-5))+15*2*-5))=0
We calculate terms in parentheses: -((+q^2+1+3q*2*-5)), so:We add all the numbers together, and all the variables
(+q^2+1+3q*2*-5)
We get rid of parentheses
q^2+3q*2*+1-5
We add all the numbers together, and all the variables
q^2+3q*2*-4
Wy multiply elements
q^2+6q^2-4
We add all the numbers together, and all the variables
7q^2-4
Back to the equation:
-(7q^2-4)
-(7q^2-4)=0
We get rid of parentheses
-7q^2+4=0
a = -7; b = 0; c = +4;
Δ = b2-4ac
Δ = 02-4·(-7)·4
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{7}}{2*-7}=\frac{0-4\sqrt{7}}{-14} =-\frac{4\sqrt{7}}{-14} =-\frac{2\sqrt{7}}{-7} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{7}}{2*-7}=\frac{0+4\sqrt{7}}{-14} =\frac{4\sqrt{7}}{-14} =\frac{2\sqrt{7}}{-7} $
| x^{2}+2x=-5 | | X–2y=4 | | 3/4x-4=32 | | 710=490(1.015)^x+1+180 | | 4=(5r+7)/3 | | -40=6x-4(2x14) | | -40=6x-4(2x+14 | | 10m+-6=4m+30 | | 4.5w-18=5.1w-30 | | 10m+-6=4m30 | | (D2+4D+4)y=0 | | 3x+4(x-15)=-137 | | n-7=21n= | | -40/100+0.1+1/4=x | | (b-5)/7=3 | | X³-27x+54=0 | | 4x+32=9x-3 | | -120=2x+4(-2x-15) | | -160/100+0.1+1/4=x | | -3y+12=5y-4 | | -6x+6(3x+)=-90 | | 7x+1.3=4x+4.9 | | 8+x+9=18 | | -6x+7=-8x-7 | | 5x-2+x=-6+x | | 5x+6=7x+16 | | x+24+75=180 | | 1/7x=27/7 | | 1/7x+27/7=Y | | 1/7x+27/7=x | | X=12-35/y | | 243(7^3x-1)=1 |