If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3p(p+4)=6
We move all terms to the left:
3p(p+4)-(6)=0
We multiply parentheses
3p^2+12p-6=0
a = 3; b = 12; c = -6;
Δ = b2-4ac
Δ = 122-4·3·(-6)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{6}}{2*3}=\frac{-12-6\sqrt{6}}{6} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{6}}{2*3}=\frac{-12+6\sqrt{6}}{6} $
| 7n-2=5n+6 | | 5(3+6x)=-195 | | 7(-8-2x)=-56 | | -4=-x-8) | | -5b-10-8=-9b-2 | | 3x+7=4x+11 | | -11=3+v/2 | | -6j+8=-7j | | 7(4+5x)=-252 | | y/6.5=90 | | 3k+1=25 | | 7(1-1x)=-77 | | -4(-2x-8)=-48 | | 7=-7/9x | | 2z-10=8-4z | | -11-14q=17-12q | | -10v=-5−9v | | -5y=6=-12y+62 | | -9r=20-7r | | 8x-6=6x-13 | | -16+7t=11+5+5t | | 2(-3x+2)=-68 | | -3p=18+6p | | 6x+180=18 | | g(-3)=g(g)+5g-11 | | -5-4f=7+2f-3f | | -6h=-7h-9 | | -9m+10=2m+10 | | 9y+33=2(y-9) | | -9.6=3.2+y/4 | | -6u+10=-10-8u | | 8n-9=-9+3n |