If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3n^2+3n-7056=0
a = 3; b = 3; c = -7056;
Δ = b2-4ac
Δ = 32-4·3·(-7056)
Δ = 84681
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{84681}=291$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-291}{2*3}=\frac{-294}{6} =-49 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+291}{2*3}=\frac{288}{6} =48 $
| 1.3x=8.2 | | 6+x=6x-19 | | 1/5c=2 | | -10-7=-3x-2 | | 3/5k+7=-9 | | -4(5n-2)+8n=2(n+9) | | 1+9n=-116 | | 10/21=6/x | | 7x+10+7x=164 | | 2x=×+35 | | -12a+4=8a-6 | | 5b-7=-7 | | 42n^2+28n=0 | | -5x+10-8x=-29 | | 2^x-10.2^x+16=0 | | 7×m+7=77 | | 143=63+8x | | 6x+58=166 | | (4x+1)(1-x)=0 | | 52+8x=132 | | 48=8x-128 | | 10.5=x+0.87(11.5-x) | | 340=11x+65 | | 1+7x+x=-63 | | 2x-10.2x+16=0 | | 137=-105+11x | | 128=8x+32 | | 13.14+.14x=20 | | -2x^2-12=-30 | | 382=162+11x | | 13.14+14x=20 | | (7c+34)=90 |