3n*n+1=416

Simple and best practice solution for 3n*n+1=416 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3n*n+1=416 equation:



3n*n+1=416
We move all terms to the left:
3n*n+1-(416)=0
We add all the numbers together, and all the variables
3n*n-415=0
Wy multiply elements
3n^2-415=0
a = 3; b = 0; c = -415;
Δ = b2-4ac
Δ = 02-4·3·(-415)
Δ = 4980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{4980}=\sqrt{4*1245}=\sqrt{4}*\sqrt{1245}=2\sqrt{1245}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1245}}{2*3}=\frac{0-2\sqrt{1245}}{6} =-\frac{2\sqrt{1245}}{6} =-\frac{\sqrt{1245}}{3} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1245}}{2*3}=\frac{0+2\sqrt{1245}}{6} =\frac{2\sqrt{1245}}{6} =\frac{\sqrt{1245}}{3} $

See similar equations:

| 180=60+3x20+(25+20) | | 131=7b+12 | | 2x+7+7x+10=116 | | 3*n*n+1-416=0 | | 4+-2=21x | | –10−2z=–z | | -4x+-5=10 | | -3/5=-2+5/4x | | 70=20x-10 | | 13x+10=6x-16 | | t²+5t-6=0 | | –3z−6=–6z | | -6+4x=-32 | | 15x-5=15x+5 | | 7k=90 | | 21x=-2+4 | | 4x-5+7=-14 | | 8.3w+8+w=28* | | 40=f/3+8 | | -19=1-7v+2v | | -8(4x+7)+1=-5x-1 | | 15y=80 | | 20x-45=5x^2 | | 10=5x-20 | | 2(x+22)=x+34 | | -2k-5(1-k)=-k+27 | | 8x/9=20 | | (3/4)x=16 | | 6(-8+2m)=-132 | | 1+7m=7m+2 | | F(x)=3/4x-150 | | –1+6c=–9+5c |

Equations solver categories