If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3m^2+5m+1=0
a = 3; b = 5; c = +1;
Δ = b2-4ac
Δ = 52-4·3·1
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{13}}{2*3}=\frac{-5-\sqrt{13}}{6} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{13}}{2*3}=\frac{-5+\sqrt{13}}{6} $
| 7(6x-11)=5 | | 1x*3+79=1x*11-9 | | X*8+21=x*5+108 | | 8=4x=5=x | | 110=5y-4y/3 | | -1.2y-4.7=-3.5 | | 0.2x+3=-1.5 | | 23-7x=3+8 | | 2x-35=70+x | | 5f-14=46= | | 6(3n-9)+45=12-4(9-2n)= | | m/3=15/9 | | 2(2x+3)=3x+5 | | 5(y+2y)=18-(1-3y)2.8 | | 7x+14(x+2)=120 | | 5(y+10)=18-(1-3y)2.8 | | -c/2-31=-15 | | 4x7-3x=9-3x+32 | | 7(1+x)+8x=-113 | | -5(-6x+6)=-150 | | 3(2x-4)+5=7x+2 | | 5a3=1/25 | | d=1/2(2.75)(9.25)^2 | | 9w2=-18w | | 28=p-17 | | x+35+40=180 | | 5^(5x)=(125)x+2 | | X^2-10x+61=40 | | X^2+5x+3=3x+6 | | 3x2-4x-16500=0 | | 8-3=2x+11 | | x*(.03)=330 |