3m(7m+12)=2(m-3)

Simple and best practice solution for 3m(7m+12)=2(m-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3m(7m+12)=2(m-3) equation:



3m(7m+12)=2(m-3)
We move all terms to the left:
3m(7m+12)-(2(m-3))=0
We multiply parentheses
21m^2+36m-(2(m-3))=0
We calculate terms in parentheses: -(2(m-3)), so:
2(m-3)
We multiply parentheses
2m-6
Back to the equation:
-(2m-6)
We get rid of parentheses
21m^2+36m-2m+6=0
We add all the numbers together, and all the variables
21m^2+34m+6=0
a = 21; b = 34; c = +6;
Δ = b2-4ac
Δ = 342-4·21·6
Δ = 652
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{652}=\sqrt{4*163}=\sqrt{4}*\sqrt{163}=2\sqrt{163}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2\sqrt{163}}{2*21}=\frac{-34-2\sqrt{163}}{42} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2\sqrt{163}}{2*21}=\frac{-34+2\sqrt{163}}{42} $

See similar equations:

| 4x-28+24=x | | 27+x=5x-3(8+7x) | | 6-2(x-4)=-3 | | 4b-2-10=2(b+3) | | -6c+3c-15=30 | | 11m-9m=8 | | 6x+25=15-3x | | –20−17p=–18p | | n=(n+2)=2(n+1) | | 3x+6+2x-3=73 | | 4g+2g=6 | | 3=3n-4n | | -13b=-52 | | -(8n-2)=31-101(1-3n) | | 7(9x+5)=63x-1 | | -12-(x+4)=3(x+7)-9 | | 16n+6=17+15n | | $12g+9g$$=$ | | 10k+2=32 | | -4/3(9-2k)=1/2(1/3k÷1) | | 154=7(-2+3v) | | 2.5(x)=x2-3x | | 7-9x=151 | | 112=-8(4+6x) | | d+-81=-49 | | 8*12x=11 | | 2*x-3)6x=4 | | 2a+1/3=7 | | 5(2m+6)+7=3(4m+10)+7-2m | | -114/(-3)=b | | 16x+8=12x+11+25 | | 2(x-3=6x+4 |

Equations solver categories