If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3i(-5+2i)=0
We add all the numbers together, and all the variables
3i(2i-5)=0
We multiply parentheses
6i^2-15i=0
a = 6; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·6·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$i_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*6}=\frac{0}{12} =0 $$i_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*6}=\frac{30}{12} =2+1/2 $
| 5n–30=-20 | | 14-8x=7x-42 | | -8-9s=-s | | 5(2x+1)=3(x+4)-55(2x+1)=3(x+4) | | | | c−5=4 | | 2p−2p+4p+3p−5p=16 | | 1-10w+3w=-5w+9 | | 4=c−3 | | 9d-4=8+3d | | 9+8v=–63 | | -9m+2=-3-8m | | 81x^2+100x^2=8100 | | 2s=-4s+6 | | 2n+5=3(n-2) | | -7w=8-9w | | 6b=11b-10(40) | | g+6−3=31g= | | x+.42x=250000 | | x=((1028^32)^32)^128 | | 3x+x2=64 | | 9x-6=2x-12 | | 8x+6=4x+38=140 | | 10^4x=30 | | -12=4/5y | | 4(2x-5)=-18-2(1-4x) | | 7x+5=3x+115 | | (12y+5)−45=12y−1+110y1.15y+2−45=12y−1+110y2.15y+65=35y−13.65=25y−1/115=25y | | -2-7n+12n=-9n+20-18+14n | | n-17=132 | | 3n+11=92 | | 4n-3=117 |