If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3h^2+44h=6279
We move all terms to the left:
3h^2+44h-(6279)=0
a = 3; b = 44; c = -6279;
Δ = b2-4ac
Δ = 442-4·3·(-6279)
Δ = 77284
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{77284}=278$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(44)-278}{2*3}=\frac{-322}{6} =-53+2/3 $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(44)+278}{2*3}=\frac{234}{6} =39 $
| 4/2y-6=-2 | | 45y^2+44y=0 | | 4x-8=7.2+5x | | y=-1.8(212)-32 | | 6x-27=18 | | 2x10=44+8x | | -41=4-2(7x-5)+7x | | 1.75g=5.8 | | 2(x+1)+3(x+2)=5 | | 2x10=45+8x | | 102-2/3x=-36 | | 5/8k-1/2=1/3 | | -4/5y=24 | | x-7/6+x+6/5=7/6 | | 0.5x+1=0.3-5 | | 3(x+1=2x+7 | | 12m+1=1950 | | 5(x+4)+6=16 | | 8x+2+6x-4=180 | | (3x+1)+(x-11)+x=180 | | 10x-6x-12=6-12 | | x2=-441 | | 1.25c=5.5 | | 10=f/2+7 | | -18=6/5x | | -5(2x-4)-16=8(x+3)-6x | | -5y/4=-25 | | X2-3x=6x+10 | | x+3×x+1.5×x+180=455 | | 3r-4+2r+14=180 | | n/4=21 | | 8.50x+1.10=2.50x |