If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3g=(1/3)(50-g)
We move all terms to the left:
3g-((1/3)(50-g))=0
Domain of the equation: 3)(50-g))!=0We add all the numbers together, and all the variables
g∈R
3g-((+1/3)(-1g+50))=0
We multiply parentheses ..
-((-1g^2+1/3*50))+3g=0
We multiply all the terms by the denominator
-((-1g^2+1+3g*3*50))=0
We calculate terms in parentheses: -((-1g^2+1+3g*3*50)), so:We get rid of parentheses
(-1g^2+1+3g*3*50)
We get rid of parentheses
-1g^2+3g*3*50+1
Wy multiply elements
-1g^2+450g*5+1
Wy multiply elements
-1g^2+2250g+1
Back to the equation:
-(-1g^2+2250g+1)
1g^2-2250g-1=0
We add all the numbers together, and all the variables
g^2-2250g-1=0
a = 1; b = -2250; c = -1;
Δ = b2-4ac
Δ = -22502-4·1·(-1)
Δ = 5062504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5062504}=\sqrt{4*1265626}=\sqrt{4}*\sqrt{1265626}=2\sqrt{1265626}$$g_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2250)-2\sqrt{1265626}}{2*1}=\frac{2250-2\sqrt{1265626}}{2} $$g_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2250)+2\sqrt{1265626}}{2*1}=\frac{2250+2\sqrt{1265626}}{2} $
| 1/3=72b | | 5(7+x)=2(4-3x) | | 5(x-3)-4(5-2x)=3 | | 4(2x+1)=5x+3x=9 | | 3x-5(x-3)=-2+4x+5 | | 2(w-3)/5=4/15-3w+1/9 | | 30-3y=50 | | (3x+2)^1/3=2 | | 1=4+-1m | | -6x+2x+2=-34 | | -36+4a=8(1+6a) | | y/8=6.7 | | 2,000=50d+180 | | 5.1=6.6-0.5x | | 5h+2(11−h)=-55 | | 2/6x-12=48 | | 33x−55(x−33)=−22+44x+5 | | 5h+2(11−h)=−55h+2(11−h)=−5. | | 5=-2+r | | (4/5)x=24 | | 2x-3÷2=5.5 | | 10v=200 | | 3(x-4)=5+2x | | 15-3/5x=3 | | (X-1)=4x-12 | | 3(6+2x)=4 | | 1/5x-2/5=0 | | 1/4x-1/x=1/15 | | x2+16=25 | | 5n^2+7n-12=0 | | -1/12m+1/3=1/4m | | x5−3x2=0 |