If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3d^2+d-10=0
a = 3; b = 1; c = -10;
Δ = b2-4ac
Δ = 12-4·3·(-10)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-11}{2*3}=\frac{-12}{6} =-2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+11}{2*3}=\frac{10}{6} =1+2/3 $
| 3(2+-4)=20-2t | | /3d2+d-10=0 | | 2(6+s)=16+2s | | -6x-11=5x | | 27x=2x+5+5x+15 | | 3x=90= | | 16x=3x+16+10 | | 2x=90= | | 11+5x=13x | | -12x-12=2x-9 | | 5r+15=5(r-2) | | .4x+4=3 | | 7x-7=- | | (x)=4x^2-3x-1 | | 5-(2x-7)=15x | | .55+.2x=x-10 | | F(7)=3(n-1)+4 | | 16z^2-16z-21=0 | | 4x-14/5+x/20=x/4-1 | | X^2+(3x/x+3)^2=16 | | 24(-5/8x)+24(1/3)=24(-1/8x)+24(3/2) | | 125+10x=130+7x | | 1-4d=53 | | 5x=15625x-2 | | 5(2g-3)-4g=8 | | 8.8a+11=90.2 | | 8x+10-2x=4-5 | | (-5/8x)+(1/3)=(-1/8x)+(3/2) | | 22=-11/12w | | 2x^2+10x-5=-1 | | -5/8x+1/3=-1/8x+3/2 | | -7n+12=8-8n |