If it's not what You are looking for type in the equation solver your own equation and let us solve it.
390=(x)+(x+30)+(x+30x^2)
We move all terms to the left:
390-((x)+(x+30)+(x+30x^2))=0
We calculate terms in parentheses: -(x+(x+30)+(x+30x^2)), so:We get rid of parentheses
x+(x+30)+(x+30x^2)
determiningTheFunctionDomain (x+30x^2)+x+(x+30)
We get rid of parentheses
30x^2+x+x+x+30
We add all the numbers together, and all the variables
30x^2+3x+30
Back to the equation:
-(30x^2+3x+30)
-30x^2-3x-30+390=0
We add all the numbers together, and all the variables
-30x^2-3x+360=0
a = -30; b = -3; c = +360;
Δ = b2-4ac
Δ = -32-4·(-30)·360
Δ = 43209
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{43209}=\sqrt{9*4801}=\sqrt{9}*\sqrt{4801}=3\sqrt{4801}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3\sqrt{4801}}{2*-30}=\frac{3-3\sqrt{4801}}{-60} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3\sqrt{4801}}{2*-30}=\frac{3+3\sqrt{4801}}{-60} $
| 10=5x2−8x+6 | | 390=(x)+(x+30)+(x+30(x2)) | | 20x-3=-0.9-x | | 3x-x^2+54=0 | | 3x=1/4x | | x÷2+8=x×2-8 | | 2x-5=10x-33x= | | 164x=20 | | x÷2+8=xx2-8 | | 23/8=2/c | | 19/8=2/c | | d/8=4/5 | | 4/7=z/12 | | (8c–10)=5(4–6c) | | 10^-1m=1 | | 2/9=4/a | | 7/6=n/10 | | 100=(n)+(n)+(n+2)+(n+2) | | 3x-6=24+4x | | 4n+5=11°+2 | | 5+p-3=3(6)=5p | | 6x–5=16 | | x=180-54-2x | | 46x=2.852 | | 7(4w+2)^3=9 | | 3(2−0.4y)+5.6=0.4(3y+1) | | 3x+1=6×+1 | | x+0.05(x)=168 | | 3.x=24.8 | | -1/6=-1/18x | | 13n=56 | | (3x-1)x2+(2x+3)x2=39 |